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Hyperparameter Tuning

• State of the Art
• Collaborative Hyperparameter Tuning – Our 

Approach
– Featurize Datasets
– Extensive Experiments on Different Datasets
– Create historical knowledgebase of results
– Generate smart sweeps on demand

• Performance Results



State of the Art

• ParamILS, local-search based methods, Hutter et 
al [1]

• REVAC, estimation of distribution methods, 
Nannen and Eiben [2]

• Spearmint, Snoek et al [3]
• Surrogate optimization approach in Weka

platform Thorton et al [4], in deep belief 
networks, Bergstra et al [5], using assessments 
from similar problems, Bardenet et al [6]



Collaborative Hyperparameter Tuning

• Generalize across similar 
learning problems, in 
other words similar 
datasets

• So we sort of built one J

No sorting hat L



Collaborative Hyperparameter Tuning

• Similar datasets have 
similar hyperparameter
correlation

• Figure 1 from [6] shows 
how error surface for 
similar datasets look 
similar

5



Featurize Datasets 
• By Dimensions of the dataset

1. Number of Instances, N!
2. Number of Features, N"
3. Number of Instances Squared, 𝑁!#
4. Number of Features Squared, 𝑁"#
5. Number of Instances*Number of Features, N! ∗ 𝑁"
6. Number of Instances/Number of Features, $!

$"
7. Fraction of Sparse Features

– features where at most 10% of the instances have a non-zero value

• By feature data type
1. Fraction of Binary Features
2. Fraction of Integral Features
3. Fraction of NonNegative Features
4. Fraction of Categorical Features



Featurize Datasets

• By distribution of values of the features
1. Number of Instances with Missing Features
2. Fraction One Value Features

– features that have no information in them – that is all have 
the same values

3. Fraction of Features with 2 Different Values (Not 
binary values)

4. Fraction of Features with 3-10 Different Values
5. Fraction of Features with 11-20 Different Values



Featurize Dataset Example
• For Example, for the following  Breast-cancer dataset

𝑭𝟏 𝑭𝟐 𝑭𝟑 𝑭𝟒 𝑭𝟓 𝑭𝟔 𝑭𝟕 𝑭𝟖 𝑭𝟗
1 5 1 1 1 2 1 3 1 1
2 5 4 4 5 7 10 3 2 1
3 3 1 1 1 2 2 3 1 1
4 6 8 8 1 3 4 3 7 1
5 4 1 1 3 2 1 3 1 1
6 8 10 10 8 7 10 9 7 1
7 1 1 1 1 2 10 3 1 1
8 2 1 2 1 2 1 3 1 1
9 2 1 1 1 2 1 1 1 5

10 4 2 1 1 2 1 2 1 1

Number of 
Instances

Number of 
Features

Number of 
Instances 
Squared

Number of 
Features 
Squared

Number of 
Instances*Nu
mber of 
Features

Number of 
Instances/N
umber of 
Features

Fraction of 
Sparse Features

10 9 100 81 8100 1.11 0

Binary 
Features 
Fraction

Integral 
Features 
Fraction

Non-Negative
Features 
Fraction

Categorical
Features 
Fraction

0 1 1 0

Instances 
with Missing 
Features

Fraction 
One 
Value 
Features

Fraction of 
Features with 
2 Different 
Values 

Fraction of 
Features with 
3-10 Different 
Values

Fraction of 
Features with 
11-20 Different 
Values

0 0 0.11 0.89 0



Extensive Experiments

• Create 𝑴, a set of models 
generated with different values of 
hyperparameters,𝒉, for each 
learner 

• These 𝒉 values are obtained by 
discretizing the space of the 
hyperparameters and choosing a 
finite set.

• Execute models in 𝑴 for a set of 
datasets 𝑫 = 𝑫𝟏, … , 𝑫𝒏

• Currently for linear learners 

• For example, for Fast Tree Binary 
Classification
– ℎ = 𝑖𝑡𝑒𝑟, 𝑛𝑙,𝑚𝑖𝑙, 𝑙𝑟

• iter -> Number of Trees
• nl -> Number of Leaves
• mil -> Minimum documents in leaf
• lr -> learning rate

– Discretized hyperparameter
space
• Iter = 20,100,500
• nl = 2-128;log;inc:4
• mil = 1,10,50
• lr = 0.025-0.4;log

– 𝑀 = { 100,4,10,0.3
⋮

20,8,100,0.025 }



Create Historical Knowledge Base of Results

• Record the results of 
the experiments
– AUC

• Generate A = 𝑀𝑥𝐷
matrices with
– Log-normal AUC
– Log-normal (1-AUC)
– Order Statistics 

• ∀𝑀% ∈ 𝑀 rank by AUC for 
each dataset

M/D 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒

𝑀* 0.9075 0.9174 0.8796 0.9820

𝑀+ 0.8883 0.8776 0.9058 0.8806

𝑀, 0.9914 0.9894 0.9933 0.9737

M/D 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒
𝑀* 2 2 3 1

𝑀+ 3 3 2 3

𝑀, 1 1 1 2 Ta
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Log-normal AUC
𝐴!,# =

log 𝐴𝑈𝐶!,# −𝑚𝑒𝑎𝑛 {log 𝐴𝑈𝐶$# , … , log(𝐴𝑈𝐶% ,#}
𝑣𝑎𝑟 log(𝐴𝑈𝐶.# )

𝐴𝑈𝐶 𝑖𝑠 𝑡ℎ𝑒 𝑀𝑥𝐷 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑎𝑢𝑐
𝑖 ∈ 1, 𝑀 , 𝑗 ∈ 1, 𝐷

Log-normal (1-AUC)
𝐴!,# =

log 𝐴𝑈𝐶!,# −𝑚𝑒𝑎𝑛 {log 𝐴𝑈𝐶$# , … , log(𝐴𝑈𝐶% ,#}
𝑣𝑎𝑟 log(𝐴𝑈𝐶.# )

𝐴𝑈𝐶 𝑖𝑠 𝑡ℎ𝑒 𝑀𝑥𝐷 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑎𝑢𝑐
𝑖 ∈ 1, 𝑀 , 𝑗 ∈ 1, 𝐷

Order Statistics
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Generate smart sweeps on demand
1. Featurize new dataset 𝐷'()
2. Find the K most similar datasets of 𝐷'() in 𝐷
– Using KNN
– Using Bayesian Sets [7]

3. For each model in 𝑀 compute the average of the AUC 

for the K most similar datasets, 𝐴*+, =
∑!"∈!$ . /%,1"

2
4. Rank the models in 𝑀 by the above average
5. Choose top 𝑠 ranked models or sweeps 
– With Diversity
– Without diversity



Diversity Coefficient 𝑑
• Introduces diversity in the models 

selected by filtering out similar models

• The number of models to be filtered 
around each 𝑠 required sweeps is 
computed as:

𝑓 =
𝑀 ∗ 𝑑
𝑠

|𝑀|-> number of models
n    -> number of datasets
s    -> number of sweeps
d   -> diversity coefficient 𝑑 ∈ 0,1

• Pseudo code for model filtering
for(int i = 0;i < s;i++){

select 𝑀C ∈ 𝑀 with highest ranking
∀𝑀D ∈ 𝑀, 𝑗 ≠ 𝑖 compute 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑀C , 𝑀D)
filter out f most similar models
𝑀 = 𝑀 −𝑀C − 𝑓 𝑚𝑜𝑑𝑒𝑙𝑠 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 𝑀C

}

• For example
– 𝑀 = 10, 𝑑 = 0.8, 𝑠 = 4

– 𝑓 = !"∗".%
&

= 2

𝑠 = {𝑀!, 𝑀&, 𝑀', 𝑀!"}

M/D 𝑫𝟏 𝑫𝟐 𝑫𝟑 𝑫𝟒 Ranking

𝑀* 6

𝑀+ 8

𝑀, 2

𝑀- 3

𝑀. 10

𝑀/ 7

𝑀0 1

𝑀1 4

𝑀2 9

𝑀*3 5

Log-normal AUC or
Log-normal (1-AUC) or
Order Statistics



Experiment Setup

Learners Logistic
Regression

Fast Tree Fast Forest Average Perceptron LDSVM Linear SVM Binary Neural Net

Hyper
Params

l1=0-2;steps:10 
l2=0-2;steps:10 
ot=1e-4,1e-5,1e-6 
m=5-50;inc:15 
norm=Gaussian,M
inMax{zero+},Min
Max,Bin

iter=2-
16384;log;inc:2
nl=2-
1024;log;inc:2
mil: 10-
10e4;log;steps:8
lr=0.1-0.5;inc:0.1
ff=0-1;inc:0.2

Iter=2-16384
;log;inc:2 
nl=2-1024;log;inc:2 
mil=10-
12e4;log;inc:4 
bagfrac=0.5,0.7,0.9 
ff=0.5,0.7,0.9 
sf=0.5,0.7,0.9

loss=HingeLoss
lr=0.01,0.05,0.1,0.5,1 
l2=0-2;steps:5 
iter=2-16384;log;inc:2  
decreaselr=+|-
initwts:0-1;inc:0.2
norm=Gaussian,MinM
ax{zero+},MinMax,Bin

depth=0,3,5,7 
lw=0.1,0.01,0.00
1 
lt=0.1,0.01,0.001 
lp=0.1,0.01,0.00
1 s=1.0,0.1,0.01 
iter=10000,1500
0,20000
norm=Gaussian,
MinMax{zero+},
MinMax,Bin

lambda=1e-5-
1;log;inc:5 
iter=1-
10e4;log;inc:2 
initwts=0.0-
1.0;inc:0.1 
norm=Gaussian,Min
Max{zero+},MinMax
,Bin

hidden=20,100,100
0
iter=20-
160;log;inc:2
lr=0.001-
1.0;log;inc:10
initwts=0.001-
1.0;log;inc:10

Number 
of

Models 
8397 12600 22680 21000 4860 6160 1920

• Models
– Currently for Binary Classifiers Only

Table 3 Learners and their hyperparameter values for which experiments were run



Experiment Setup 
• Datasets (\\tspace09\data\BinaryClassification)

Dataset Instances Features Numeric
(Int/Real)

Binary Categorical Text Sparse Missing 
Values

CCSChallenge 10000 100 Yes No No No Yes No

CoptTest 12111 116 No Yes No No Yes No

Father 7128 2527 No Yes No No Yes Yes

Hyperonym 12837 50035 No Yes No No Yes No

NewsHardware 959 35213 No Yes No No Yes No

Sentiment 1400 24531 No Yes No No Yes No

Table 4 MLComp Datasets (http://mlcomp.org/)

Dataset Instances Features Numeric
(Int/Real)

Binary Categorical Text Sparse Missing 
Values

BreastCancer 476 9 Yes No No No No Yes

InternetAd 1634 1558 Yes Yes No No No Yes

Ionosphere 351 34 Yes Yes No No No No

SeismicBumps 2584 24 Yes Yes Yes No No No

Adult 32561 108 Yes Yes Yes No No No

Census_KDD 199523 515 Yes Yes Yes No No No

Table 5 UCI Datasets (https://archive.ics.uci.edu/ml/datasets.html)



Experiment Setup

• More Datasets

• Compute Resources for running experiments
– MSR Cluster
– TLCHPCK
– MLC

Dataset Instances Features Numeric
(Int/Real)

Binary Categorical Text Sparse Missing 
Values

Enron 57607 91397 Yes No No No Yes Yes

RCV1 781265 47153 Yes No No No Yes No

YearPrediction 463715 90 Yes No No No No No

Table 6 Other Datasets



Results  - Leave One Out Cross Validation

• Learner = Logisitic Regression, K for KNN = 3, Number 
of sweeps S = 10, Diversity Coefficient = 0.8



Results - Leave One Out Cross Validation



Results - Leave One Out Cross Validation
• Learner = Fast Tree, K for KNN = 3, Number of 

sweeps S = 10, Diversity Coefficient = 0.8



Results - Leave One Out Cross Validation



Results – Comparison over Sweeps for 
Fast Tree



Results – Comparison over Sweeps for 
Fast Tree



Results – Comparison over Sweeps for 
Logistic Regression



Results – Comparison over Sweeps for 
Logistic Regression



Results – New Dataset
Dataset Instances Features Numeric

(Int/Real)
Binary Categorical Text Sparse Missing 

Values

LM 4512 65536 No No No Yes No No

Table 7 New Dataset

Logistic Regression Fast Tree



Accuracy and Number of Sweeps

• x-axis is number of sweeps and y-axis is AUC
• Each line corresponds to the max AUC for each sweep 

for a particular value of K and diversity co-efficient
• Accuracy increases with number of sweeps
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Incorporating Smart Sweep in AzureML



Future Directions

• Create a more comprehensive past experiments 
knowledge base with more datasets

• Determine additional dataset features
• Measure model execution time accurately and use 

it for model selection
• Extend to other learners
• Use experimental results as prior for Bayesian 

Inference and other optimization techniques
• Algorithm recommendation
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